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Abstract

We call an Ising model tractable when it is possi-
ble to compute its partition function value (statisti-
cal inference) in polynomial time. The tractability
also implies an ability to sample configurations
of this model in polynomial time. The notion
of tractability extends the basic case of planar
zero-field Ising models. Our starting point is to
describe algorithms for the basic case, computing
partition function and sampling efficiently. Then,
we extend our tractable inference and sampling
algorithms to models whose triconnected compo-
nents are either planar or graphs of O(1) size. In
particular, it results in a polynomial-time infer-
ence and sampling algorithms for K33 (minor)-
free topologies of zero-field Ising models—a gen-
eralization of planar graphs with a potentially un-
bounded genus.

1. Introduction

Computing the partition function of the Ising model is gener-
ally intractable, even an approximate solution in the special
anti-ferromagnetic case of arbitrary topology would have
colossal consequences in the complexity theory (Jerrum &
Sinclair, 1993). Therefore, a question of interest—rather
than addressing the general case—is to look after tractable
families of Ising models. In the following, we briefly review
tractability related to planar graphs and graphs embedded in
surfaces of small genus.

Related work. Onsager (1944) gave a closed-form solution
for the partition function in the case of a homogeneous inter-
action Ising model over an infinite two-dimensional square
grid without a magnetic field. This result has opened an ex-
citing era of phase transition discoveries, which is arguably
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one of the most significant contributions in theoretical and
mathematical physics of the 20th century. Then, Kac and
Ward (1952) showed in the case of a finite square lattice
that the problem of the partition function computation is
reducible to a determinant. Kasteleyn (1963) generalized
the results to the case of an arbitrary inhomogeneous interac-
tion Ising model over an arbitrary planar graph. Kasteleyn’s
construction was based on mapping of the Ising model to a
perfect matching (PM) model with specially defined weights
over a modified graph. Kasteleyn’s construction was also
based on the so-called Pfaffian orientation, which allows
counting of PMs by finding a single Pfaffian (or determi-
nant) of a matrix. Fisher (1966) simplified Kasteleyn’s
construction such that the modified graph remained pla-
nar. Transition to PM is fruitful because it extends planar
zero-field Ising model inference to models embedded on
a torus (Kasteleyn, 1963) and, in fact, on any surface of
small (orientable) genus g, but with a price of the additional,
multiplicative, and exponential in genus, 49, factor in the
algorithm’s run time (Gallucio & Loebl, 1999).

A parallel way of reducing the planar zero-field Ising model
to a PM problem consists of constructing a so-called ex-
panded dual graph (Bieche et al., 1980; Barahona, 1982;
Schraudolph & Kamenetsky, 2009). This approach is more
natural and interpretable because there is a one-to-one cor-
respondence between spin configurations and PMs on the
expanded dual graph. An extra advantage of this approach
is that the reduction allows one to develop an exact efficient
sampling. Based on linear algebra and planar separator
theory (Lipton & Tarjan, 1979), Wilson introduced an al-
gorithm (1997) that allows one to sample PMs over planar
graphs in O(N %) time. The algorithms were implemented
in (Thomas & Middleton, 2009; 2013) for the Ising model
sampling, however, the implementation was limited to only
the special case of a square lattice. In (Thomas & Middleton,
2009) a simple extension of the Wilson’s algorithm to the
case of bounded genus graphs was also suggested, again
with the 49 factor in complexity. Notice that imposing zero
field condition is critical, as otherwise, the Ising model over
a planar graph is NP-hard (Barahona, 1982). On the other
hand, even in the case of zero magnetic field Ising models
over general graphs are difficult (Barahona, 1982).

Contribution. In this manuscript, we discuss tractability
related to the Ising model with zero magnetic fields over
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graphs more general than planar. Our construction is related
to graphs characterized in terms of their excluded minor
property. Planar graphs are characterized by excluded K5
minor and K33 minor (Wagner’s theorem (Diestel, 2006),
Chapter 4.4). Therefore, instead of attempting to generalize
from planar to graphs embedded into surfaces of higher
genus, it is natural to consider generalizations associated
with a family of graphs excluding K5 minor or K33 minor.

In this manuscript, we show that K33-free zero-field Ising
models are tractable in terms of inference and sampling
and give a tight asymptotic bound, O(N 2), for both oper-
ations. For that purpose, we use graph decomposition into
triconnected components—the result of recursive splitting
by pairs of vertices, disconnecting the graph. Indeed, the
K3s-free graphs are simple to work with because their tri-
connected components are either planar or K5 graphs (Hall,
1943). Therefore, the essence of our construction is to de-
compose the inference task in Ising over a K33-free graph
into a sequential dynamic programming evaluation over pla-
nar or K5 graphs in the spirit of (Straub et al., 2014). Notice
that the triconnected classification of the tractable zero-field
Ising models is complementary to the aforementioned small
genus classification. We illustrate the difference between the
two classifications with an explicit example of a tractable
problem over a graph with genus growing linearly with
graph size.

Structure. The manuscript is organized as follows. Sec-
tions 2 and 3, respectively, establish notations and pose
problems of inference and sampling. Section 4 presents
transition from the zero-field Ising model to an equivalent
tractable perfect matching (PM) model. This provides a
description of a O(N %) inference and sampling method in
planar models, which is new (to the best of our knowledge),
and it sets the stage for what follows. Section 5 discusses a
scheme for polynomial inference and sampling in zero-field
models over graphs with triconnected components that are
either planar or of O(1) size. Section 6 applies this scheme
to K33-free zero-field Ising models, resulting in tight asymp-
totic bounds, which appear to be equivalent to those in the
planar case. Section 7 describes benchmarks justifying cor-
rectness and efficiency of our algorithm. Technical proofs
of statements given throughout the manuscript can be found
in the supplementary material.

2. Definitions and Notations

Let V = {v1,...,vv|} be a finite set of vertices, a multiset
E consisting of e C V, |e|] = 2 be edges, then we call
G = (V,E) a graph. We call G normal, if E is a set (i.e.,
there are no multiple edges in G).

A tree is a connected graph without cycles. For V/ C V,
let G(V') denote a graph (V', {{v,w} € E|v e V',w €

V'}). Let H = (Vy, Ep) be a graph. Then H is a sub-
graph of G, if Vg C V,Ey C E. Vertex v € V is an
articulation point of G, if G(V '\ {v}) is disconnected. G is
biconnected if there are no articulation points in GG. Bicon-
nected component is a maximal subgraph of G without an
articulation point.

The graph G is planar if it can be drawn on a plane without
edge intersections. The corresponding drawing is referred
to as planar embedding of G. When no ambiguity arises,
we do not distinguish planar graph G from its embedding.

A set B/ C F is called a perfect matching (PM) of G, if
edges of E' are disjoint and their union equals V. PM(G)
denotes the set of all PMs of (. K, denotes a complete
(normal) graph on p vertices, and K33 denotes a utility
graph. Triple bond is a graph of two vertices and three edges
between them. Multiple bond is a graph of two vertices and
at least three edges between them.

3. Problem Setup

Let G = (V, E) be a normal graph, |V| = N. For each
v € V, define a random binary variable (a spin) s, €
{=1,41}, S = (Su;, ---; Svy )- Subscript ¢ will be used as
shorthand for v;, for brevity, thus S = (s, ..., sy). For
each e € F, define a pairwise interaction J. € R. We
associate assignment X = (x1,...,7x) € {—1,+1}" to
vector S with probability as follows:

1
]P(S = X) = E@Xp Z Jexvxw ) (1)
e={v,w}€eFr
where
Z = Z exp Z STy Toy
Xe{-1,+1}V e={v,w}eFE

The probability distribution (1) defines the so-called zero-
field (or pairwise) Ising model, and Z is called the partition
function (PF) of the zero-field Ising (ZFI) model. Notice
that P(S = X) = P(S = —X).

Given a ZFI model, our goal is to find Z (inference) and
draw samples from the model efficiently.

4. Reducing Planar ZFI Model to PM Model

In this section, we consider a special case of planar graph G
and introduce a transition from the ZFI model to the perfect
matching (PM) model on a different planar graph.

We assume that the planar embedding of G is given (and
if not, it can be found in O(N) time (Boyer & Myrvold,
2004)). We follow (Schraudolph & Kamenetsky, 2009) in
constructions discussed in this section.
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4.1. Expanded Dual Graph

First, triangulate G by adding new edges e to E such that
Je = 0. (The triangulation does not change probabilities
of the spin assignments.) Graph G is generated (use the
same notation as for the original graph for convenience)
and is biconnected with every face, including lying on the
boundary, forming a triangle. Complexity of the triangula-
tion procedure is O(N), see (Schraudolph & Kamenetsky,
2009) for an example.

Second, construct a new graph, Gr = (Vp, Er), where
each vertex f of Vp is a face of (G, and there is an edge
e = {f1, f} in Er if and only if f; and f share an edge in
G. By construction, G is planar, and it is embedded in the
same plane as G, so that each new edge e = {f1, f2} € Er
intersects the respective old edge. Call G a dual graph of
G. Since G is triangulated, each f € Vp has degree 3 in
Gp.

Third, obtain a planar graph G* = (V*, E*) and its embed-
ding from G by substituting each f € Vp by a K3 triangle
so that each vertex of the triangle is incident to one edge, go-
ing outside the triangle (see Figure 1(a) for an illustration).
Call G* an expanded dual graph of G.

Newly introduced triangles of G*, substituting G’s ver-
tices, are called Fisher cities (Fisher, 1966). We refer to
edges outside triangles as intercity edges and denote their
set as EF. The set E* \ E} of Fisher city edges is de-
noted as E,. Notice that e* € E7J intersects exactly one
e € FE and vice versa, which defines a bijection between
E7 and E; denote it by g : Ef — E. Observe also that
|Ef| = |E| < 3N — 6, where N is the size of G. Moreover,
E7isaPMof (V*, E*), and thus |V*| = 2|E}| = O(N).
Since G* is planar, one also finds that | E*| = O(N). Con-
structing G* takes efforts of O(N) complexity.

(a) (b)

Figure 1. (a) A fragment of G’s embedding after triangulation
(black), expanded dual graph G* (red). (b) Possible X configura-
tions and corresponding M (X ') (wavy lines) on a single face of G.
Rotation symmetric and reverse sign configurations are omitted.

4.2. Perfect Matching (PM) Model

For X € {—1,+1}", let I(X) be aset {e € E}|g(e) =
{v,w}, x, = x4 }. Each Fisher city is incident to an odd
number of edges in I(X). Thus, I(X) can be uniquely com-
pleted to a PM by edges from E7.. Denote the resulting PM
by M(X) € PM(G*) (see Figure 1(b) for an illustration).
LetCy = {+1} x {—1,+1}V "1,

Lemma 1. M is a bijection between C. and PM(G*).

Define weights on G* according to

Vet € B ey = exp(2Jy(e)), €* € E}
1, e* e B
Lemma 2. For E' € PM(G*) holds
1
— F =
PM(S)=E)=— [] e )

e*ek’

where

7" = Z H Cer = %Zexp <Z JC> 3)

E'ePM(G*) e*€E’ ecE

is the PF of the PM distribution (PM model) defined by (2).

Second transition of (3) reduces the Z computation to solve
for Z*. Furthermore, only two equiprobable spin config-
urations X’ and — X"’ (one of which is in C) correspond
to E’, and they can be recovered from E’ in O(N) steps,
thus resulting in the statement that one samples from (1) if
sampling from (2) is known.

The PM model can be defined for an arbitrary graph G =
(V, E), N = |V| with positive weights c., e € E’, as a prob-
ability distribution over M € PM(G): P(M) o< [, ¢ vy Ce-

Our subsequent derivations are based on the following:
Theorem 1. Given the PM model defined on planar graph
G of size N with positive edge weights {ce}, one can find
its partition function and sample from it in O(N 2 ) time.

Algorithms, constructively proving the theorem, are directly
inferred from (Wilson, 1997; Thomas & Middleton, 2009),
with minor changes/generalizations. Hence, we outline them
in the supplementary material.

Corollary. Inference and sampling of the PM model on G*
(and, hence, the ZFI model on G) take O(N 2 time.

S. Dynamic Programming within
Triconnected Components

Starting with this section, we present new results. We de-
scribe a general algorithm that allows us to perform infer-
ence and sampling from the ZFI model in the case where
the triconnected components of the underlying graph are
either planar or of O(1) size.
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5.1. Decomposition into Biconnected Components

Consider a ZFI model (1) over a normal graph G = (V, E),
|[V| = N. If G is disconnected, then distribution (1) is
decomposed into a product of terms associated with inde-
pendent ZFI models over the connected components of G.
Hence, we assume below, without loss of generality, that G
is connected.

Let Gy, ..., G}, be biconnected components of G. They form
a tree if an edge is drawn between G; and G; whenever G}
and G; share an articulation point. A simple reduction (see
supplementary material) shows that inference and sampling
on G are reduced to a series of inference and sampling on
ZFI models induced by subgraphs G1, ..., Gp,.

Lemma3. Let 71, ..., Zy, be partition functions of ZFI mod-
els induced by G1, ..., Gy. Then,

Z=2""2,75..2). 4)

Sampling from P(S = X)) is reduced to a series of sampling
on Gy, ...,Gy and O(N) post-processing.

Observe also that all the articulation points and the bicon-
nected components of G can be found in O(N + | E|) steps
(Hopcroft & Tarjan, 1973a). Therefore later on, we assume
without loss of generality that GG is biconnected.

5.2. Biconnected Graph as a Tree of Triconnected
Components

In this subsection we follow (Hopcroft & Tarjan, 1973b;
Gutwenger & Mutzel, 2001), see also (Mader, 2008) to
define the tree of triconnected components. Following dis-
cussions of the previous subsection, one considers here a
biconnected G.

Let v,w € G. Divide F into equivalence classes Fr, ..., F
so that e}, eo are in the same class if they lie on a common
simple path that has v, w as endpoints. Ej, ..., By are re-
ferred to as separation classes. If k > 2, then {v, w} is a
separation pair of G, unless (a) k = 2 and one of the classes
is a single edge or (b) k£ = 3 and each class is a single edge.
Graph G is called triconnected if it has no separation pairs.

Let {v,w} be a separation pair in G with equivalence
classes By, ..., E,. Let B = U E,E" = U | E
be such that |E’| > 2, |E”| > 2. Then, graphs G; =
(Ueerre, E'U{ey}), Ga = (Uecrre, E"U{ey}) are called
split graphs of G with respect to {v, w}, and ey, is a virtual
edge, which is a new edge between v and w, identifying the
split operation. Due to the addition of ey, G; and G, are
not normal in general.

Split G into GG; and G5. Continue splitting G'1, G2, and so
on, recursively, until no further split operation is possible.
The resulting graphs are split components of G. They can

either be K5 (triangles), triple bonds, or triconnected normal
graphs.

Let ey be a virtual edge. There are exactly two split com-
ponents containing ey: G1 = (V1, Eq) and G2 = (Va, Es).
Replacing G and G5 with G’ = (ViU Vs, (E1UE)\{ev})
is called merging GG1 and G2. Do all possible mergings of
the cycle graphs (starting from triangles), and then do all
possible mergings of multiple bonds starting from triple
bonds. Components of the resulting set are referred to as
the triconnected components of G. We emphasize again
that some graphs (i.e., cycles and bonds) in the set of tricon-
nected components are not necessarily triconnected.

Lemma 4. (Hopcroft & Tarjan, 1973b) Triconnected com-
ponents are unique for G. Total number of edges within the
triconnected components is at most 3| E| — 6.

Consider a graph 7', where vertices (further referred to as
nodes for disambiguation) are triconnected components, and
there is an edge between a and b in T, when a and b share a
(copied) virtual edge.

Lemma 5. (Hopcroft & Tarjan, 1973b) T is a tree.

Example. Figure 2 illustrates triconnected decomposition
of a binconnected graph and intermediate steps towards it.

All triconnected components, and thus 7", can be found in
O(N + |E|) steps (Hopcroft & Tarjan, 1973b; Gutwenger
& Mutzel, 2001; Vo, 1983). Merging of two triconnected
components is equivalent to contracting an edge in 7" (VI
on Figure 2). After all possible mergings, G is recovered.

5.3. Inference via Dynamic Programming

Assume that there is a (small) number C' bounding the size
of each nonplanar triconnected component. In the following,
we present a polynomial time algorithm that computes Z
for a given (fixed) C.

First, one finds triconnected components of G and T in
O(N + |E|) steps. Choose a root node d in T'. For any node
a # d in T, let the next node b (on a unique path from a
to d) be a parent of a, and a be a child of b. Nodes, which
do not have any children, are called leaves. For node a, let
a subtree T(a) denote a subgraph constructed from a, its
children, grandchildren, and so on.

Our algorithm processes each node once. The node is only
processed when all its children have been already processed,
so a leaf is processed first and the root is processed last. Let
a = (Va,Eq), Ny = |V,| be a currently processed node.
Let GT = (VI ET) be a graph obtained by merging all
nodes in T'(a). If a is a root, then GI = G. Since the
root is processed last, it outputs the desired PF, Z. Figure 3
provides a visualization of a node processing routine which
is to be explained.
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Figure 2. (I) An example biconnected graph G. (II) A separation pair {a, b} of G and separation classes F1, E2, E3 associated with
{a,b}. (III) Result of split operation with E' = E; U E», E” = E5. Hereafter, dashed lines indicate virtual edges and dotted lines
connect equivalent virtual edges in split graphs. (IV) Split components of G (non-unique). (V) Triconnected components of G. (VI)
Triconnected component tree 1" of G; spacial alignment of V is preserved. “G,” “B,” and “C” are examples of the “triconnected graph,”

“multiple bond,” and “cycle,” respectively.

If a is not a root, let eyy = {p, ¢} be a virtual edge shared
between a and its parent. The only virtual edge in G is
ey, and GI without ey, is a subgraph of G. Hence, pairwise
interactions are defined for ET \ {ey,}. The result of node
a’s processing is a quantity.

Fa(l'/,l‘”) — Z exp( Z Jexv-rw),

zp=x',z=1"" e={v,w}

VuEVaT\ev: z,=+1 €€E5\{€V}
where z/,2” = =£1. Notice that m,(+1,+1) =
ma(—1,-1), ma(+1,-1) = ma(—1,+1), and hence

o (2!, 2") = ma (2", 2.

Processing nodes one by one we notice that the following
cases are possible:

1. ais a leaf. Therefore, there is nothing to merge, and
a=GY = (V,,E,). If a is nonplanar, find 7,(£1, £1) by
brute force enumeration, completed in O(1) steps. If a is a
multiple bond, 7, (%1, +1) is found in O(|E,|) steps.

Assume now that node a is (or corresponds to) a planar,
normal graph. Define J.,, = 0 and consider a ZFI model
with the probability P,(S, = X,) defined over graph a
with {J. | e € E,} as pairwise interactions. Let Z, be the
PF of the ZFI model. In the remaining part of this case we
will only work with this induced ZFI model, so that one can
assume that nodes in V, are ordered, V,, = {vy,...,vn, },
such that v; = p, vy = t. Then, one utilizes the notations
Sy = (81, 8n,) and X, = (21, ..., xn,) € {—1, +1} e
and derives

To(2, 2") = > exp< > Jezva:w)

Xo=(&' @ k1, k1) Ne={v,w}
eckE,

= ZPo(x1 =2 20 = 2"). (5)

Next, one triangulates a by adding enough edges with zero
pairwise-interactions, similar to how it is done in Subsec-
tion 4.1. Assume that a is triangulated, and observe that
the right-hand side of Eq. (5) is not affected. Construct
G* = (V*, E*), which is an expanded dual graph of a with
E7, B¢, and g defined as in Subsection 4.1. Then, define
mapping M : {—1,+1}Ne — PM(G*), weights c.-, and
the PF Z* as in 4.2. Denote e}, = g~ *(ey).

According to the definition of M,

Py (21 = z2) = Py(ey, € M(S,))

1
= ST e (6)

E’'€ePM(G*), e*€L’
e}, EE’

Denote G, = G*(V* \ €},). We continue the chain of
relations/equalities (6) observing that

(E' € PM(G*)| e}, € E'} = {E" U{el} | E" € PM(G3))}-

Then one arrives at

el zy
]P)a(lj = .732) = Z: Z H Cex = 627*]}7

E"€PM(G?,) e* EEY

where Z3; is a PF of the PM model over G3,. Compute Z™*

3
and Z, in O(NZ2) steps, as described in Section 4. Since
G5, is planar of size O(N,), Z;; can also be computed in

3
O(N¢g ) steps, as Theorem 1 states. The following relations
3
finalize computation of 7, (+1, £1) in O(NZ) steps:

_Za _ Zay 2y

7Ta(+].,+].) B Pa(.’ﬁl = 1'2) = YA
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Za
oY — o (+1,+1).

ma(HL 1) = Z2B (a1 # 22) =
2. ais not a leaf, not a root. Let cy, ..., ¢, be a’s children,
and e}, = {p’, '} be a virtual edge shared between ¢; and
a, 1 <1 < q. At this point, we already computed all
e, (41, 41). Each {p, '} is a separation pair in GZ that
splits it into GZ; and the rest of GT, containing all GCTJ,,
j # i. Denote all virtual edges in a as Ey, and then the
following relation holds:

|:€Xp (
e={v,w}

e€E,\Ey

>
q
T e (2 )] NG
=1

7_(_(‘L(J/_/7J;//) —

> Jexvxw>

’ "
Tp=x",x¢=x",

VueVy\ey:iz,==+1

If a is (or corresponds to) a multiple bond, (7) is computed
trivially in O(| E,|) steps. Hence, one assumes next that a
is a normal graph.

Each 7, (2/, ") is positive, and it essentially only depends
on the product 2’2", that is, there exist such A;, B; that
log e, (¢/,2") = A; + B;a’z”. Using this relation, one
rewrites (7) as

2.

7 7
Tp=x , =",

VueVy\ey:z,=+£1
q q
+ Z Bix, xti> - exp (Z Ai> . (8
i=1 i=1

Denote J.,, = 0, Je; = B; foreach 1 < ¢ < q. Then
rewrite (8) as

7_‘_a(x/’xll) —

exp( Z JeTy Ty

e={v,w}
e€E.\Ey

exp (

We compute (9) by brute force in O(1) steps, if a is non-
planar. If a is normal planar, we once again consider a ZFI
model with the probability P, (S, = X,), defined over G,
where the pairwise weights are {J. |e € E,}, and Z,, is the
respective PF. Then applying machinery from Case 1, one
derives

>

e={v,w}€E,

Jewvxw) .9
acp=a:/,wt=w”,

YueVy\ey:z,=+1

q
ma(2',2") = exp <Z Ai> ZgPo(xp =2’ x4y = ")
i—1

3

in O(NZ) steps.

3. ais aroot. Once again, let ¢y, ..., ¢4 be children of a,
el, = {p',t'} be a virtual edge shared between ¢; and a, and
1 < < g, Ey be the set of virtual edges in £, (which a
shares only with its children). Using considerations similar
to those described while deriving Eq. (7), one arrives at

Z = Z exp( Z Jexvxw> =
Xe{-1,+1}N e={v,w}eE
q
Z [exp( Z Jemvxw) -Hﬂ'ci (xp,x,)}
YueVy:x,=+1 e:{’u,w} i=1
ecE,\Ey

Finally, one computes Z similarly to how the 7 values were

derived in Case 2. It takes O(|E,|) steps if a is a multiple

bond. Otherwise, one constructs a ZFI model and finds the

PF over the respective graphs in either O(1) steps, if the
3

graph is nonplanar, or in O(Nf) steps, if a is normal planar.

5.4. Sampling via Dynamic Programming

The sampling algorithm, detailed below, follows naturally
from the inference routine. Compute triconnected compo-
nents of G in O(N + |E|) steps. If all the triconnected
components of GG are multiple bonds, G should be a multi-
ple bond itself, but GG is normal. Therefore, there exists a
component that is not a multiple bond; choose it as a root of
T.

Use the inference routine (described in the previous Sec-
tion) to compute Z. Now, do a backward pass through the
tree, processing the root first, and then processing the node
only when its parent has already been processed (Figure 4
visualizes the sampling algorithm).

Suppose a is a root and it is processed by now. Since a is not
a multiple bond, it results in an Ising model, P, (S, = X,).
Draw a spin configuration X, from this model. It will take

3
O(1) steps if a is nonplanar or O(NZ2) steps if a is planar.

Suppose a is not a root. If a is a multiple bond, spin val-
ues were already assigned to its vertices (contained within
the node/graph a). Otherwise, there exists a ZFI model
P.(S, = X,) already constructed at the inference stage.
Following the notation of Subsection 5.3, one has to sam-
ple from P, (S, = Xa|sp = xp, st = x¢), since spins s,
and s; are shared with the parent model and have already
been drawn as x,, and x;, respectively. If z,, = x, all valid
X, are such that e}, € M (X,), and the task is reduced to
sampling PMs on G7,. Otherwise, all valid X, are such that
e, ¢ M(X,). Denote Gy, = (V*, E* \ {e,}) and notice
that
{E' e PM(G*) | €}, ¢ E'} = PM(G))).

Therefore, the task is reduced to sampling PM over @;.
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Figure 3. Inference. Illustration of a node processing. Arrow indicates a direction to the root. (I) Exemplary node a (subgraph in the
center with one solid side edge, one solid diagonal edge, and solid dashed edges, marked according to the rules explained in the captions
to Fig. 2), its (two) children and a parent. (II) Topology of the ZFI model defined on a. (III) Triangulated ZFI model. (IV) Expanded dual
graph G* of ZFI model (red). Computing PF Z* of G*’s PMs is a part of the inference processing of the node a. (V) G3, graph for a
(red). Computing PF Z3; of G3, PMs is a part of the inference processing of node a, unless a is a root.

t‘g_ _;_ _é
o o

Figure 4. Sampling. Illustration of a node processing. General notations (arrows, children, parents, dashed and dotted lines) are consistent
with the captions of Figs. 2,3. Assume that spin values at a’s parent are already drawn (and consequently, spin values at ey are drawn,
too). The examples in the top line are for the case of equal spin values at ey, and the examples in the bottom line are for unequal spin
values at ey. (I) Start with the triangulated ZFI model defined during inference (see Fig. 3). (I) Find either G3, (top, red) or @; (bottom,
red) depending on spin values at ey. (IIT) Sample PM on G5, or é;. (IV) Set spin values according to PM. (V) Propagate the spin values
drawn along the virtual edges towards the child nodes.
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Figure 6. Execution time of inference (red dots) and sampling (blue
dots) depending on IV, shown on a logarithmic scale. Black line

corresponds to O(N 3 ).

Figure 5. KL-distance of the model probability distribution com-
pared with the empirical probability distribution. N, m are the
model’s size and the number of samples, respectively.
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6. K33-free Topology
6.1. ZFI Model over K33-free Graphs

Consider the ZFI model (1) over a normal connected graph
G. Let H be some graph. Then, H is a minor of G, if it
is isomorphic to GG’s subgraph, in which some edges are
contracted. (See (Diestel, 2006), Chapter 1.7, for a formal
definition.)

G is K33-free, if K33 is not a minor of G, that is, it cannot
be derived from G’s subgraph by contraction of some edges.

Let a biconnected G be decomposed into the tree of tricon-
nected components. Then, the following lemma holds:

Lemma 6. (Hall, 1943) Graph G is Kss-free if and only if
its nonplanar triconnected components are exactly Ks.

Therefore, if G is K33-free, it satisfies all the conditions
needed for efficient inference and sampling, described in
Section 5. According to the lemma, the graph in Fig. 2 is
K3s-free. The next statement expresses the main contribu-
tion of this manuscript.

Theorem 2. If G is K33-free, inference or sampling of (1)
3
takes O(N 2) steps.

‘We point out that the family of models for which the algo-
rithm from Section 5 applies is broader than just K33-free
models. However, we focus on K33-free graphs because
they have a fortunate characterization in terms of a missing
minor.

6.2. Discussion: Genus of K33-free Graphs

A remarkable feature of K33-free models is related to con-
siderations addressing the graph’s genus. Genus of a graph
is a minimal genus (number of handles) of the orientable
surface that the graph can be embedded into. Kasteleyn
(Kasteleyn, 1963) has conjected that the complexity of eval-
uating the PF of a ZFI model embedded in a graph of genus
g is exponential in g. The result was proven and detailed in
(Regge & Zecchina, 2000; Gallucio & Loebl, 1999; Cima-
soni & Reshetikhin, 2007; 2008). One naturally asks what
are genera of graphs over which the ZFI models are tractable.
The following statement relates biconnectivity and graph
topology (genus):

Theorem 3. (Battle et al., 1962) A graph’s genus is a sum
of its biconnected component genera.

If a graph is not biconnected, its genus can be arbitrarily
large, while inference and sampling may still be tractable in
relation to the decomposition technique discussed in Sub-
section 5.1. Therefore, it becomes principally interesting to
construct tractable biconnected models with large genus.

Lemma 7. A biconnected K33-free graph of size 5n can be
of genus as big as n.

From this we conclude that K33-free graphs can’t be tackled
via the bounded-genus approach of (Regge & Zecchina,
2000; Gallucio & Loebl, 1999; Cimasoni & Reshetikhin,
2007; 2008). This justifies the novelty of our contribution.

7. Implementation and Tests

To test the correctness of inference, we generate random
K33-free models of a given size and then compare the value
of PF computed in a brute force way (tractable for suffi-
ciently small graphs) and by our algorithm. We simulate
samples of sizes from {10, ..., 15} (1000 samples per size)
and verify that respective expressions coincide.

When testing sampling implementation, we take for granted
that the produced samples do not correlate given that the
sampling procedure (Section 5.4) accepts the Ising model
as input and uses independent random number generation
inside. The construction does not have any memory, there-
fore, it generates statistically independent samples. To test
that the empirical distribution is approaching a theoretical
one (in the limit of the infinite number of samples), we
draw different numbers, m, of samples from a model of
size N. Then we find Kullback-Leibler divergence between
the probability distribution of the model (here we use our
inference algorithm to compute the normalization, Z) and
the empirical probability, obtained from samples. Fig. 5
shows that KL-divergence converges to zero as the sample
size increases. Zero KL-divergence corresponds to equal
distributions.

Finally, we simulate inference and sampling for random
models of different size N and observe that the computa-
3

tional time (efforts) scales as O(N 2) (Fig. 6)".

8. Conclusion

In this manuscript, we compiled results that were scattered
over the literature on O(N %) sampling and inference in the
Ising model over planar graphs. To the best of our knowl-
edge, we are the first to present a complete and mathemati-
cally accurate description of the tight asymptotic bounds.

We generalized the planar results to a new class of zero-field
Ising models over graphs not containing K33 as a minor. In
this case, which is strictly more general than the planar case,
we have shown that the complexity bounds for sampling
and inference are the same as in the planar case. Along with
the formal proof, we provided evidence of our algorithm’s
correctness and complexity through simulations.

"Tmplementation of the algorithms is available at
https://github.com/Valery Tyumen/planar_ising.
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